Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 9: 1807, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30174657

RESUMEN

Propionibacterium freudenreichii is a beneficial Gram-positive bacterium, traditionally used as a cheese-ripening starter, and currently considered as an emerging probiotic. As an example, the P. freudenreichii CIRM-BIA 129 strain recently revealed promising immunomodulatory properties. Its consumption accordingly exerts healing effects in different animal models of colitis, suggesting a potent role in the context of inflammatory bowel diseases. This anti-inflammatory effect depends on surface layer proteins (SLPs). SLPs may be involved in key functions in probiotics, such as persistence within the gut, adhesion to host cells and mucus, or immunomodulation. Several SLPs coexist in P. freudenreichii CIRM-BIA 129 and mediate immunomodulation and adhesion. A mutant P. freudenreichii CIRM-BIA 129ΔslpB (CB129ΔslpB) strain was shown to exhibit decreased adhesion to intestinal epithelial cells. In the present study, we thoroughly analyzed the impact of this mutation on cellular properties. Firstly, we investigated alterations of surface properties in CB129ΔslpB. Surface extractable proteins, surface charges (ζ-potential) and surface hydrophobicity were affected by the mutation. Whole-cell proteomics, using high definition mass spectrometry, identified 1,288 quantifiable proteins in the wild-type strain, i.e., 53% of the theoretical proteome predicted according to P. freudenreichii CIRM-BIA 129 genome sequence. In the mutant strain, we detected 1,252 proteins, including 1,227 proteins in common with the wild-type strain. Comparative quantitative analysis revealed 97 proteins with significant differences between wild-type and mutant strains. These proteins are involved in various cellular process like signaling, metabolism, and DNA repair and replication. Finally, in silico analysis predicted that slpB gene is not part of an operon, thus not affecting the downstream genes after gene knockout. This study, in accordance with the various roles attributed in the literature to SLPs, revealed a pleiotropic effect of a single slpB mutation, in the probiotic P. freudenreichii. This suggests that SlpB may be at a central node of cellular processes and confirms that both nature and amount of SLPs, which are highly variable within the P. freudenreichii species, determine the probiotic abilities of strains.

2.
Malar J ; 10: 21, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21288344

RESUMEN

BACKGROUND: Malaria has a devastating impact on worldwide public health in many tropical areas. Studies on vector immunity are important for the overall understanding of the parasite-vector interaction and for the design of novel strategies to control malaria. A member of the fibrinogen-related protein family, fbn9, has been well studied in Anopheles gambiae and has been shown to be an important component of the mosquito immune system. However, little is known about this gene in neotropical anopheline species. METHODS: This article describes the identification and characterization of the fbn9 gene partial sequences from four species of neotropical anopheline primary and secondary vectors: Anopheles darlingi, Anopheles nuneztovari, Anopheles aquasalis, and Anopheles albitarsis (namely Anopheles marajoara). Degenerate primers were designed based on comparative analysis of publicly available Aedes aegypti and An. gambiae gene sequences and used to clone putative homologs in the neotropical species. Sequence comparisons and Bayesian phylogenetic analyses were then performed to better understand the molecular diversity of this gene in evolutionary distant anopheline species, belonging to different subgenera. RESULTS: Comparisons of the fbn9 gene sequences of the neotropical anophelines and their homologs in the An. gambiae complex (Gambiae complex) showed high conservation at the nucleotide and amino acid levels, although some sites show significant differentiation (non-synonymous substitutions). Furthermore, phylogenetic analysis of fbn9 nucleotide sequences showed that neotropical anophelines and African mosquitoes form two well-supported clades, mirroring their separation into two different subgenera. CONCLUSIONS: The present work adds new insights into the conserved role of fbn9 in insect immunity in a broader range of anopheline species and reinforces the possibility of manipulating mosquito immunity to design novel pathogen control strategies.


Asunto(s)
Anopheles/genética , Fibrinógeno/genética , Secuencia de Aminoácidos , Animales , Anopheles/clasificación , Anopheles/inmunología , Anopheles/parasitología , Secuencia de Bases , Brasil , Clonación Molecular , Evolución Molecular , Genes de Insecto , Inmunoglobulinas/genética , Insectos Vectores , Malaria/parasitología , Filogenia , Análisis de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...